- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Zhu, Weitao (2)
-
Bongiovanni, Eliot (1)
-
Di Giosia, Leonardo (1)
-
Diaz, Alejandro (1)
-
Dimitrov, Evgeni (1)
-
Fang, Xiang (1)
-
Fesser, Lukas (1)
-
Habib, Jahangir (1)
-
Kakkar, Arjun (1)
-
Kenigsberg, Lea (1)
-
Pittman, Dylanger (1)
-
Serio, Christian (1)
-
Sothanaphan, Nat (1)
-
Teitler, Carson (1)
-
Wang, Angela (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bongiovanni, Eliot; Di Giosia, Leonardo; Diaz, Alejandro; Habib, Jahangir; Kakkar, Arjun; Kenigsberg, Lea; Pittman, Dylanger; Sothanaphan, Nat; Zhu, Weitao (, Analysis and Geometry in Metric Spaces)Abstract The classic double bubble theorem says that the least-perimeter way to enclose and separate two prescribed volumes in ℝ N is the standard double bubble. We seek the optimal double bubble in ℝ N with density, which we assume to be strictly log-convex. For N = 1 we show that the solution is sometimes two contiguous intervals and sometimes three contiguous intervals. In higher dimensions we think that the solution is sometimes a standard double bubble and sometimes concentric spheres (e.g. for one volume small and the other large).more » « less
An official website of the United States government
